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Abstract

In this paper we present an algorithm for adaptive sparse grid approxima-
tions of quantities of interest computed from discretized partial differential
equations. We use adjoint-based a posteriori error estimates of the phys-
ical discretization error and the interpolation error in the sparse grid to
enhance the sparse grid approximation and to drive adaptivity of the sparse
grid. We show that utilizing these error estimates provides significantly more
accurate functional values for random samples of the sparse grid approxi-
mation. We also demonstrate that alternative refinement strategies based
upon a posteriori error estimates can lead to further increases in accuracy
in the approximation over traditional hierarchical surplus based strategies.
Throughout this paper we also provide and test a framework for balancing
the physical discretization error with the stochastic interpolation error of
the enhanced sparse grid approximation.
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1. Introduction

Partial Differential Equations (PDE) are used to simulate a wide range
of phenomenon and are often used to inform design decisions and to esti-
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mate risk in systems with large human and/or financial impact but with
limited capacity for experimentation. Given the importance of these appli-
cations the ability to accurately quantify uncertainty in model predictions
is essential.

Most uncertainty quantification (UQ) studies focus on estimating para-
metric uncertainty. In such analyses, the uncertainty in the input data,
such as model coefficients, forcing terms etc, is usually represented through
a finite number of random variables with a known probability distribution.
The goal of the study is then to compute the effect of the varying input data
on the system response, and in many cases, to calculate the statistics of the
response.

The accuracy to which uncertainty can be quantified is limited by the
computational resources available to resolve these governing equations. Many
applications require vast amounts of computational effort and thus the num-
ber of model evaluations that can be used to interrogate the uncertainty in
the system behavior is limited. Consequently a significant portion of meth-
ods developed for uncertainty quantification (UQ) in recent years have fo-
cused on constructing surrogates of expensive simulation models using only
a limited number of model evaluations.

The most widely adopted approximation methods are based on gener-
alized polynomial chaos (PC) expansions [12, 24], sparse grid interpola-
tion [17, 18] and Gaussian Process (GP) models [21]. The performance of
these methods is problem dependent and in practice it is difficult to esti-
mate the accuracy of the approximation constructed. Cross-validation is
one means of estimating the accuracy of the approximation, however the
accuracy of the cross-validation prediction of the error is limited. Moreover,
cross validation is not readily applied for approximation methods which re-
quire structured model samples, such as sparse grid interpolation and many
forms of pseudo-spectral projection.

In this paper we utilize sparse grid interpolation to approximate model
responses. Sparse grids can be built using local or global basis functions
and have well established and effective adaptivity procedures which can be
leveraged in conjunction with good error estimates to concentrate computa-
tional effort to resolving important dimensions and/or regions of the random
parameter space. Unlike regression based PCE or Gaussian Process models,
sparse grids can be used regardless of the computational budget of the UQ
analysis. For example sparse grids can be used to approximate a model
response using tens to millions of model runs, whereas the aforementioned
alternatives have upper limits in the low thousands imposed by the need to
solve large linear systems.

2



Throughout this paper, we will use J(ξ) to denote the exact response
from a partial differential equation that depends on the unknown variable ξ.
When solving PDEs using techniques such as the finite element method the
physical discretization error will be non-zero. We use Jh(ξ) to denote the
response from the discretized model. As previously mentioned, solving the
discretized model is often computationally expensive and therefore we need
to consider a surrogate approximation of Jh(ξ), which we denote Jh,n(ξ).
Given these approximations, the error in the response can be decomposed
into two components

‖J(ξ)− Jh,n(ξ)‖ ≤ ‖J(ξ)− Jh(ξ)‖︸ ︷︷ ︸
I

+ ‖Jh(ξ)− Jh,n(ξ)‖︸ ︷︷ ︸
II

(1.1)

where: I is the finite element physical discretization error; and II is the
stochastic approximation error introduced by approximating the quantity of
interest by a sparse grid interpolant.

Recently, a posteriori error estimation has arisen as a promising approach
to estimate the error in approximate input-output relationships. Adjoint-
based a posteriori error estimation was originally developed to estimate er-
ror in numerical approximations of deterministic Partial Differential Equa-
tions (PDE) [1, 8, 13, 20], but recent modifications allow similar ideas to
be used to estimate error in approximations of quantities of interest from
PDEs with uncertain parameters. This relatively new approach, introduced
in [5] and further analyzed in [4, 6], is based on goal-oriented adjoint-based
error estimates and is used to predict error in samples of a response sur-
face approximation of a specific quantity of interest. Similar to standard
adjoint-based error estimation procedures, this new approach includes the
physical discretization error if the adjoint problem is approximated in a
higher-order discretization space. However, the error estimate from this
new approach also contains an approximation of the error in the stochastic
discretization due to the evaluation of the response surface model rather
than the PDE. In [4, 6], it was shown that, for spectral and pseudo-spectral
Galerkin approximations, this estimate of the stochastic interpolation error
is higher-order even if a low order approximation of the adjoint is used for
the stochastic approximation.

In general, it is inefficient to reduce the stochastic error to a level below
the error introduced by the deterministic discretization. Much of the existing
literature focuses on minimizing the stochastic approximation error, however
only a few attempts have been made to discuss or account for the combined
effect of deterministic and stochastic approximation error. Error bounds for
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the stochastic approximation error for isotropic sparse grid approximations
of elliptic PDEs using Clenshaw-Curtis or Gaussian abscissa are given in
[19]. In this paper, we use adjoint-based error estimates to ensure that the
error in the stochastic approximation is never significantly less than the
physical discretization error.

Our goal in this paper is to utilize adjoint-based a posteriori error esti-
mates to efficiently compute pointwise approximations of specific quantities
of interest, usually computed from PDE solutions, using adaptive sparse
grid approximations. Specifically, we aim to

• Show that the enhancement results in [4] also extend to adaptive sparse
grid approximations.

• Present new adaptivity strategies for sparse grids based on a posteriori
error estimates.

• Demonstrate that, for a given computational budget, better accuracy
can be obtained using the proposed approach.

• Provide a stopping criterion, based on the physical discretization error,
to avoid over-resolving the sparse grid.

The remainder of this paper is organized as follows. Section 2 introduces
a general model problem. In Section 3 we recall the standard adjoint-based
posteriori error analysis for deterministic PDEs. Section 4 presents the stan-
dard adaptive sparse grid algorithms. In Section 5 we derive an a posteriori
error estimate for samples of a sparse grid surrogate. In Section 6, we present
the new adaptive strategies using the error estimates. Section 7 introduces
the sparse grid approximation of the error estimate and our stopping criteria
based on an estimate the physical discretization error. Numerical results are
presented in Section 8 and our conclusions are presented in Section 9.

2. General nonlinear problem and notation

We consider the following system of partial differential equations,

∂z
∂t

+ A(ξ; z) = 0, (2.1)

defined on Ω× (0, T ] where Ω ⊂ Rs, s = 2, 3, a polygonal (polyhedral) and
bounded domain with boundary ∂Ω. The random parameter ξ takes values
in Γξ ⊂ Rd and reflects uncertainty in model and source parameters. The
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solution operator’s dependency on ξ implies that z := z(x, t, ξ) is also uncer-
tain and may be modeled as a random process for which we will construct
a surrogate approximation. We assume that A is convex and has smooth
second derivatives. Specific examples of A and z will be given in subsequent
sections. We assume that sufficient initial and boundary conditions are pro-
vided so that (2.1) is well-posed in the sense that there exists a solution for
a. e. ξ ∈ Γξ.

We use (·, ·)D to denote the inner product of L2(D) and if the domain
of integration is clear from the context, we suppress the index D. We let V
be a Sobolev space where for any non-negative integer m we recall

Hm(Ω) = {v ∈ L2(Ω) ; ∂kv ∈ L2(Ω) ∀ |k| ≤ m},

equipped with the following seminorm and norm

|v|Hm(Ω) =

 ∑
|k|=m

∫
Ω
|∂kv|2 dx

1/2

, ‖v‖Hm(Ω) =

 ∑
0≤|k|≤m

|v|2Hk(Ω)

1/2

.

We frequently use Hm(Ω) to denote the obvious generalization to vector
valued functions.

We assume that (2.1) has an equivalent variational formulation seeking,
for any ξ ∈ Γξ, z ∈ V × (0, T ] such that,∫ T

0

[(
∂z
∂t
,w
)

+ a(ξ; z,w)
]
dt = 0, ∀w ∈ V × (0, T ]. (2.2)

Let Th be a conforming partition of Ω, composed of NT closed convex
volumes of maximum diameter h. An element of the partition Th will be
denoted by Ti where hi stands for the diameter of Ti for i = 1, 2, . . . , NT .
We assume that the mesh is regular in the sense of Ciarlet [7]. In this paper
we take Th to be a conforming finite element mesh consisting of simplices or
parallelopipeds. Let the space of continuous, piecewise functions of degree
q over the spatial domain be defined by

V
(q)

h =
{
v ∈ C(S) ∩H1(Ω) : ∀E ∈ Th,v|E ∈ Pq(E)

}
.

The semi-discrete variational formulation seeks, for any ξ ∈ Γξ, zh ∈ V
(q)

h ×
(0, T ] such that,∫ T

0

[(
∂zh

∂t
,w
)

+ a(ξ; zh,w)
]
dt = 0, ∀w ∈ V (q)

h × (0, T ]. (2.3)

5



A fully discrete scheme for any ξ ∈ Γξ can be obtained by letting In =
(tn−1, tn) and time steps kn = tn − tn−1 denote the discretization of [0, T ]
as 0 = t0 < t1 < · · · < tN = T . In this paper, we do not focus on any
particular time integration scheme. We do assume that the fully discrete
approximation is given as a polynomial in time, e.g.,

zh ∈ V
(q)

h ×W(r),

where
W(r) = {w ∈ C([0, T ]) : w ∈ Pr(In),∀In} ,

denotes the space of continuous piecewise polynomial functions of degree r.
To make the notation less cumbersome, we generally use zh to denote the
fully discrete solution unless otherwise noted. The choice of continuous poly-
nomials in time is merely for convenience. Discontinuous polynomials may
also be used and require a straightforward modification to the a posteriori
error analysis involving jump terms at each time node [9, 8].

3. Adjoint-based a posteriori error estimation

The goal of a simulation is often to accurately estimate a relatively small
number of quantities of interest. Adjoint-based error analysis relates the er-
ror (e = z− zh) in a quantity of interest to a computable weighted residual.
We are usually interested in estimating the error in a numerical approxima-
tion computed using a discretization of a variational formulation, but it is
often intuitive to start the discussion with strong form adjoint operators. We
assume that we are interested in estimating the error in a linear functional
of the solution,

J(ξ) = (ψT (x), z(x, T, ξ)) +
∫ T

0
(ψ, z(x, t, ξ)) dt, (3.1)

where ψT (x) is used to compute a linear functional at t = T , and ψ = ψ(x, t)
is used to compute time-averages. Typically, either ψT or ψ are zero, but
this is not required. Nonlinear functionals and linear functionals at t 6= T
can also be used, but this is omitted here for the sake of simplicity.

For a given ξ ∈ Γξ, the linear adjoint operator in strong form is defined
via the duality relation∫ T

0

[(
∂z
∂t
,v
)

+ (L(ξ)v,w)
]
dt =

∫ T

0

[(
−∂v
∂t
, z
)

+ (v,L∗(ξ)w)
]
dt

(3.2)
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where L(ξ) is a given linear operator. For a general nonlinear PDE one
approach to define the linear operator L(ξ) is to assume A(ξ; ·) is convex
and use the Integral Mean Value Theorem yielding

A′(ξ, z; e) = A(ξ; z)−A(ξ; zh)

where z lies on the line connecting z and zh, and e = z− zh. In practice, z
is unknown so we linearize around zh giving,

L(ξ)e = A′(ξ, zh; e) = A(ξ; z)−A(ξ; zh) +R(ξ; e, zh, z),

whereR(ξ; e, zh, z) represents the remainder. Since zh−z ≈ e, it is common
to assume that the remainder is a higher order perturbation term and can
be neglected [2, 1, 9]. Notice that the operator L(ξ) is often the same linear
operator used in computing the step in Newton’s method. This fact is often
exploited to ease construction of the discrete adjoint operator.

The error in a linear functional can be represented using the definition
of the adjoint:

J(ξ; z)− J(ξ; zh) = (φ(x, 0, ξ), z(x, 0, ξ)− zh(x, 0, ξ))−∫ T

0

((
∂zh

∂t
,φ

)
+ a(ξ; zh,φ)

)
dt,+

∫ T

0
R(ξ; e, zh, z,φ) dt, (3.3)

where φ := φ(x, t, ξ) is defined by the adjoint problem

−∂φ
∂t

+ L∗(ξ)φ = ψ(x, t), (3.4)

φ(x, T ) = ψT (x). (3.5)

If the adjoint solution, φ, is given, then the error representation in Eq. (3.3)
is easily evaluated if we neglect the higher order remainder term, see [2, 1, 9,
10] for a complete discussion of this remainder term. However, the solution
to the adjoint problem Eq. (3.4) is usually not given explicitly and we must
approximate the solution using an appropriate discretization. In this paper,
we approximate the adjoint solution using a finite element method. Since we
are also interested in estimating the physical discretization error, we use a
higher-order approximation in the spatial domain. In general, the definition
of the adjoint problem also requires appropriate boundary conditions and the
error representation (3.3) also includes boundary terms to account for errors
made in approximating the boundary conditions on the forward problem.
We omit these terms in this paper for the sake of simplicity and refer the
interested reader to the standard references, e.g. [13, 8, 1, 20], for a complete
discussion of these additional terms.
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4. Sparse grid approximations

Sparse grid stochastic collocation has been shown to provide efficient and
accurate approximation of stochastic quantities [17, 18, 19]. Here we adopt
this technique to construct approximations of functionals of the discretized
solution, Jh(ξ) := J(zh(ξ)). We typically do not know the closed form of
Jh(ξ) and only require that we can evaluate Jh(ξ) at arbitrary points in Γξ

by evaluating the discretized model. For simplicity we will restrict atten-
tion to consider stochastic collocation problems characterized by variables
ξ with finite support normalized to fit in the domain Γξ = [0, 1]d. However
the technique proposed here can be applied to semi or unbounded random
variables using the methodology outlined in [16].

Sparse grids [3] approximate Jh(ξ) via a weighted linear combination of
basis functions

In[Jh(ξ)] := Jh,n(ξ) =
n∑

k=1

vk Ψk(ξ) (4.1)

The approximation is constructed on a set of anisotropic grids Ξl on the
domain Γξ where l = (l1, . . . , ld) ∈ Nd is a multi-index denoting the level
of refinement of the grid in each dimension. These rectangular grids are
Cartesian product of nested one-dimensional grid points Ξl = {ξl,i : i < 0 ≤
i ≤ ml}

Ξl = Ξl1 × · · ·Ξld

Typically when approximating Jh(ξ) with a smooth dependence on ξ, Ξl

are chosen to be the nested Gaussian quadrature rules associated with the
distribution of ξi. For example the Gauss-Patterson rule is used for uniform
variables and Genz-Keister rule for Gaussian variables. For functions of
lower regularity Ξl are typically chosen to be equidistantly spaced. The
number of points ml of a one-dimensional grid of a given level is dependent
on the growth rate of the quadrature rule chosen.

The multivariate basis functions Ψk are a tensor product of one dimen-
sional basis functions. Adopting the multi-index notation use above we have

Ψl,i(ξ) =
d∏

n=1

ψln,in(ξn) (4.2)

where i determines the location of a given grid point. There is a one-to-one
relationship between Ψk in (4.1) and Ψl,i and each Ψl,i is uniquely associ-
ated with a grid point ξl,i = (ξl1,i1 , . . . , ξld,id) ∈ Ξl. Many different one-
dimensional basis functions ψln,in(ξn) can be used. If Jh(ξ) has a smooth
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dependence on ξ then the best choice is the one-dimensional Lagrange poly-
nomials, If local approximation is required one can use a multi-dimensional
piecewise polynomial basis [3].

The multi-dimensional basis (4.2) span the discrete spaces Vl ⊂ L2(Γξ)

Vl = span {Ψl,i : i ∈ Kl} Kl = {i : ik = 0, . . . ,mlk , k = 1, . . . , d}

These discrete spaces can be further decomposed into hierarchical difference
spaces

Wl = Vl \ Vl

d⊕
n=0

Vl−en

The subspaces Wl consists of all basis functions Ψl,i ∈ Vl which are not
included in any of the spaces Vk smaller than Vl, i.e. with k < l. These
hierarchical difference spaces can be used to decompose the input space such
that

Vl =
⊕
k≤l

Wl and L2(Γξ) =
∞⊕

k1=0

· · ·
∞⊕

kd=0

Wk =
⊕
k∈Rd

Wk

For numerical purposes we must truncate the number of difference spaces
used to construct V . Traditional isotropic sparse grids can be obtained by
all hierarchical subspaces Wl with and index set that satisfy

L = {l : |l|1 ≤ l} (4.3)

Given a truncation, such as the a-priori one above or one which has been
determined adaptively, Jh(ξ) can be approximated by

Jh,n(ξ) =
∑
l∈L

Jl, Jl =
∑
i∈Il

vl,i Ψl,i(ξ) (4.4)

where Il = {i : Ψl,i ∈Wl}.
Here we note that the vi,j are the coefficient values of the hierarchical

product basis, also known as the hierarchical surplus. The surpluses are
simply the difference between the function value and the sparse grid ap-
proximation at a point, not already in the sparse grid. That is

vi,j = J(ξl,i)− Jn(ξl,i), L ∪ l = ∅

Sparse grids can also be used to interpolate the forward solution zh

and the adjoint solution φh. We define these approximations as In[zh] :=
zh,n and In[φh] := φh,n. When computing a-posteriori error estimates,

9



interpolants of zh and φh must be computed at each point in the finite
element mesh and step in the time discretization.

Although a vast improvement of full tensor grid approximations the num-
ber of sparse grid points in an isotropic sparse grid still grows quickly with
dimension. To enhance the convergence of sparse grids two types of adap-
tivity have been developed. The first type of adaptivity refines the grid di-
mension by dimension [11], greedily choosing points in dimensions that are
deemed by the algorithm to be more important. The second type of adaptiv-
ity refines the sparse grid locally in regions considered important [14]. When
using localized basis functions adaptivity can be performed combining the
strengths of both dimension and regional adaptivity [17].

4.1. Dimension adaptivity
The dimension adaptive algorithm begins with a low-level isotropic sparse

grid approximation with a set of subspaces L and active subspaces A. Often
L = W0 and A = {Wek

, k = 1 . . . , d}. We then chooses Wl ∈ A with the
largest error indicator γl and refine that subspace. The subspace is refined
by adding all indices Wk with k = l + en, n = 1, . . . , d that satisfy the
following admissibility criterion

l− ek ∈ L for 1 ≤ k ≤ d, lk > 1 (4.5)

Each subspace that satisfies (4.5) is then placed in the active set A. This
process continues until a computational budget limiting the number of model
samples (grid points) is reached or a global error indicator drops below a
predefined threshold. Pseudo-code for the dimension adaptive algorithm is
shown in Algorithm 1. The auxiliary TERMINATE routine is given in Algo-
rithm 2.

Purposefully, Algorithm 1 does not specify the contents of the INDICATOR
and GLOBAL INDICATOR routines in Algorithm 1. These routines control
which subspaces are added to the sparse grid. The key to adaptive sparse
grids working well is versions of these two routines which respectively provide
accurate estimates of the contribution of a subspace to reducing the error
in the interpolant, and the error in the entire interpolant.

Typically these indicator functions are functions of the hierarchical sur-
plus values vi,j of points in the grid. Throughout this paper we will use the
indicator

γl =
∑
i∈Il

|vi,j|wi,j (4.6)
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as the baseline for comparison for the proposed method. Here wi,j is the
quadrature weight of the grid point ξi,j. In addition, we use the global
indicator

η =
∑
l∈A

γl

It is possible alternative definitions of γl and η could produce more accurate
sparse grids for a given number of function evaluations. Alternatives could
be generated via studies such as that discussed in [23]. Such an exploration
of alternative surplus based criteria, however, is beyond the scope of this
paper. Instead this paper focuses on alternative criteria that do not require
additional evaluations of the simulation model. These alternative criteria are
discussed in Section 6. The differences between surplus refinement and the
alternative refinement criteria proposed in Section 6 motivate the conditional
statements in Algorithm 1 not usually seen in the literature [11, 17].

Algorithm 1 INTERPOLATE[f(ξ),L,A,τ ,n]→ fn

For a given L the points in the sparse grid are Ξ :=
⋃

l∈L Ξl.
The number of sparse grid points are N = #Ξ

WHILE NOT TERMINATE[A,N ,τ ,n]

• W := arg maxWl∈A γl % Determine the subspace with the highest priority

• A := A \W % Remove W from the active set

• IF ( NOT using surplus refinement ) L := L ∪W

• J := REFINE[W ,L] % Find all admissible forward neighbors of W

• γl := INDICATOR[Wl] ∀Wl ∈ J % Calculate the priority of the neighbors

• A := A ∪ J % Add the forward neighbors to the active index set

• IF ( using surplus refinement ) L := L ∪ J

4.2. Local adaptivity
Locally-adapted sparse grids can be adapted using a similar method to

that employed for dimension adapted grids. Instead of refining the grid
subspace by subspace, locally-adaptive grids are adapted point by point.
When a new point is chosen for refinement it is added to the sparse grid.
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Algorithm 2 TERMINATE[A,N ,τ ,n]

• η := GLOBAL INDICATOR[A]

• IF A = ∅ or N ≥ n or η < τ RETURN TRUE

• ELSE RETURN FALSE

Children of this point are then found and added to an active set Alocal. In
this paper we will consider the typical local refinement strategy [18] and
the simultaneous dimension and local refinement proposed in [17] termed
generalized local refinement. In this manuscript we will refer to the former
as traditional local refinement and the later as generalized local refinement.
Error indicators, are then computed at each point in Alocal. The next point
chosen for refinement is simply the point ξl,i in Alocal with the largest error
indicator γl,i. The local adaptive sparse grid procedure can be obtained from
Algorithm 1 by defining A and L to contain points rather than subspaces
and W and Wl to be grid points not subspaces. The REFINE routine must
also be changed as discussed in [17].

Throughout this paper we will use the indicator

γl,i = |vi,j|wi,j (4.7)

as the baseline for comparison for the proposed method. Here wi,j is the
quadrature weight of the grid point ξi,j. In addition, we use the global
indicator

η =
∑
{l,i}∈A

γl,i

5. Adjoint-based error estimates for samples of a sparse grid sur-
rogate

In many practical situations, we are interested in computing probabilistic
quantities, such as the probability of a particular event, from the surrogate
approximation which usually requires sampling the surrogate according to
the distribution of the random parameters over Γξ. In order to have con-
fidence in our estimates of these probabilistic quantities, we must consider
the error in each sample of the surrogate.

In this paper, we employ the technique introduced in [5] and further an-
alyzed in [4, 6] to estimate the error in a sample of the sparse grid surrogate
of the quantity of interest.
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Given sparse grid approximations of the forward zh,n and adjoint φh,n

solutions we can compute the following approximate error estimate

J(ξ)− Jh,n(ξ) ≈ ε(Jh,n(ξ)), (5.1)

where

ε(Jh,n(ξ)) = (φh,n(x, 0, ξ), z(x, 0, ξ)− zh,n(x, 0, ξ))

−
∫ T

0

((
∂zh,n(x, t, ξ)

∂t
,φh,n(x, t, ξ)

)
+ a(ξ; zh,n(x, t, ξ),φh,n(x, t, ξ))

)
dt.

To construct the approximations of the forward and adjoint solutions we
construct a sparse grid approximation for each degree of freedom in the
entire forward and adjoint solutions. Note that unlike the sparse grid ap-
proximation of a scalar function given in (4.4), the approximations of zh,n

and φh,n are functions, not just of ξ, but also the spatial and temporal mesh
locations x and t. However, building approximations over x and t requires
no additional PDE solves as one solve will produce an entire spatial and
temporal history. We simply need to store and compute the hierarchical
surplus for each x and t separately. This is not as memory intensive as
it may first appear. We only need to store the additional hierarchical sur-
pluses at each sparse grid point. The remaining sparse grid data structures
do not need to be replicated. We do remark, however, that if the PDE
solution has millions or even billions of degrees of freedom then memory
problems associated with processing big data sets will arise. This issue is
not just endemic to the approach proposed in this paper, but is a difficulty
also faced by a posteriori error analysis for deterministic PDEs. The typ-
ical mitigation strategy to avoid saving the full forward approximation is
called check-pointing [15, 22], which effectively balances the cost in saving
the solution versus recomputing the solution. Unfortunately, this is not an
option for the evaluation of the error estimate (5.1) since neither the forward
problem nor the adjoint problem are actually solved at the sample point.
We could utilize data compression to reduce the storage costs but this is
beyond the scope of this paper and will be pursued in later work.

While the a posteriori error estimate given by (5.1) is only an approxi-
mation of the true error, it was shown in [4, 6] that the error in the error
estimate can be bounded by the product of the pointwise errors (in Γξ) in the
forward and adjoint approximation. Thus, for smooth problems the error
estimate is higher order than the surrogate approximation and can be used
as either a higher order correction term (as in [4, 6]) or to guide stochastic
adaptivity as we pursue in Section 6.
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6. Alternative adaptivity strategies

Hierarchical surplus indicators such as those in (4.6) and (4.7) require
the model to be evaluated at the associated grid point ξl,i before the surplus
and thus indicator can be computed. This procedure adds a grid point and
then checks if that refinement should have been performed. Efficiency can
be gained by using an error indicator that flags the need for refinement
without the need to evaluate the simulation model. The a posteriori error
estimate (5.1) is one such indicator.

We construct the following error indicators using the a posteriori error
estimate for dimension adaptive sparse grids

γε
l =

∑
i∈Il

|ε(Jh,n(ξl,i))|wi,j, ηε =
∑
l∈A

γε
l (6.1)

and for locally adaptive sparse grids

γε
l,i = |ε(Jh,n(ξl,i))|wi,j, ηε =

∑
{l,i}∈A

γε
l,i (6.2)

The use of these indicators requires a minor modification to the interpolate
algorithms presented in the literature [11, 17]. The modification, present in
Algorithm 1, controls when the model is evaluated at a sparse grid point and
when that point is added to the sparse grid. For surplus based refinement the
model is evaluated at the sparse grid when INDICATOR is called on a subspace
containing the point (dimension refinement) or on the point directly (local
refinement). The point is then immediately added to the sparse grid. When
using a posteriori refinement the model does not need to be evaluated until
REFINE is called on the point at which time the point is also added to the
sparse grid.

When using local refinement one should ensure all the ancestors of and
point in the sparse grid also exist in the sparse grid. Similarly to when
deciding to evaluate the model at a point, the use of a posteriori error
guided refinement also effects the point in INTERPOLATE that the ancestors
are added to the sparse grid. Although the function values at ancestor
points are not necessary to compute the error estimate at the child point we
add all ancestors to the sparse grid before the error estimate is computed.
Alternatively one can also add the ancestor point later, only when the point
is added to the grid. However we found during our investigation that adding
ancestors before computing the error estimate produced a more accurate
error estimate at the candidate points which resulted in a more accurate
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sparse grid for a fixed number of sample functions for all of the examples
presented in this paper. These results are not shown as the authors believed
this minor point would distract from the main conclusions that can be drawn
from the results section.

Throughout the remainder of this manuscript we will use the follow-
ing notation to denote the various types of refinement strategies. Let γl
and γε

l respectively denote, hierarchical surplus and a posteriori based di-
mension based refinement. Let hierarchical surplus based traditional local
refinement [18] and generalized local refinement [17] be denoted by γtrad

l,i

and γgen
l,i , respectively. Finally we define γε,gen

l,i to be a posteriori error based
generalized local refinement.

7. Sparse grid approximations of the error

As previously mentioned, the evaluation of the a posteriori error esti-
mate using (5.1) requires the full forward and adjoint approximations at
ξ ∈ Γξ as well as the evaluation of the space-time weighted-residual. While
this is usually much cheaper than solving the forward problem at ξ, the
computation cost in producing the error estimate at ξ should not be ne-
glected. If we only need to compute a small number of samples, then this
is probably not a significant issue. However, we often require a very large
number of samples of the surrogate, and, in turn, a very large number of
error estimates. To mitigate this issue, we propose constructing a surrogate
of the error estimate. This can significantly reduce the number of error es-
timates required and the surrogate of the error estimate can be chosen to
have similar accuracy as the point-wise evaluation of (5.1).

Given a sparse grid approximation of the quantity of interest Jh,n(ξ) we
can use a finite number of error estimates ε(Jh,n(ξl,i)) at new grid points
to build an enhanced sparse grid. Once built the enhanced sparse grid
interpolant can be sampled directly during post-processing, thus removing
any further need to evaluate (5.1).

The procedure needed to construct an enhanced sparse grid is outlined
in Algorithm 3. To build an enhanced sparse grid we must first construct
sparse grid approximations of the QOI, forward solution and the adjoint
solution. The number of points used in these approximations is controlled
by two parameters τ and n. The tolerance τ should be chosen such that
refinement is stopped when the interpolation error in the enhanced sparse
grid approximation Jε

n becomes less than the error in the error estimate.
Setting the maximum number of points n to a finite number can also be
used as a means to limit the cost of constructing the enhanced sparse grid
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to within a pre-defined computational budget. The choices of τ and n found
in Algorithm 3 are discussed in Section 7.2. Once the approximations of
the QOI, forward solution and the adjoint solution have been obtained the
sparse grid is enhanced by sampling the error estimate Jε

n(ξ). These two
phases needed to build the enhanced approximation Jε

n,m are graphically
illustrated in Figure 1.

Algorithm 3 ENHANCED INTERPOLATE[Jh(ξ),zh(ξ),φh(ξ),L,A,τ ,n]→
Jε

n

Define C to be the ratio of the cost of evaluating the error estimate to the
combined cost of a forward and adjoint equation evaluation

• Jh(ξ)h,n/4 = INTERPOLATE[Jh(ξ),τ ,n/4]

• zh,n/4(ξ,x, t) = INTERPOLATE[zh(ξ,x, t),τ ,n/4]

• φh,n/4(ξ,x, t) = INTERPOLATE[φh(ξ,x, t),τ ,n/4]

• δmax = maxξl,i∈A δ(Jh(ξl,i))

• γmax = maxξl,i∈A γl,i

• τ = max(δmax, γ
2
max)

• Jε
n(ξ) = INTERPOLATE[Jh,n(ξ)(ξ) + ε(Jh,n(ξ)),τ ,Cn/2]

% zh,n/4 and φh,n/4 are needed to compute ε(Jh,n(ξ)).

An enhanced sparse grid can be built using dimension or local refinement.
The construction of the enhanced sparse grid approximation varies slightly
depending on whether local or dimension adaptivity is being used. The two
types of construction are discussed in Section 7.1.

7.1. Adaptivity
When using dimension-adaptive sparse grids we begin with an initial

grid with subspaces in L and a set of candidate subspaces A generated
when building the sparse grid approximation of the QOI, forward solution
and the adjoint solution. When using surplus refinement A ⊂ L and when
using a posteriori error refinement L ∩ A = ∅. This difference arises from
the fact that surplus refinement requires the model to be evaluated at all
points in the candidate subspaces where as a posteriori refinement does not.
The set L at this stage of the algorithm are the gray boxes in Figure 1.
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Figure 1: The two phases undertaken when building an enhanced dimension adaptive
sparse grid interpolant Jε

n. The first phase consist of building the un-enhanced approxima-
tion Jh,n(ξ). The gray boxes on the left represent the 2D sparse grid subspaces l = (l1, l2)
used to build Jh,n(ξ) and the black points on the right represent the corresponding points
in that sparse grid. At each of the black points both the forward and adjoint equations are
solved. The second phase involves continuing refinement until the sparse grid adequately
resolves the enhanced function Jε

n. The red boxes represent the additional subspaces used
to built the enhanced approximation Jε

n,m. The red points are the associated additional
points that are added to the sparse grid. Unlike the black points the red points only
require evaluation of the residual (to compute the a posteriori error estimate) and the
cheaply evaluated approximation Jh,n(ξ). The red boxes are not to be confused with
active indices which cannot have the structure shown in this figure.

Given the sets A and L we simply use INTERPOLATE[Jε
n(ξ),L,A,τ ,m]

to construct the enhanced sparse grid Jε
n,m := Im[Jε

n(ξ)], where Jε
n(ξ) :=

Jh,n(ξ) + ε(Jh,n(ξ)). Unlike the construction of Jh,n(ξ) the construction
of Jε

n does not require the evaluation of the forward solution zh(ξl,i) at
each new grid point. Rather, evaluating Jε

n(ξ) only involves evaluating
the un-enhanced sparse grid Jh,n(ξl,i) and computing the error estimate
ε(Jh,n(ξl,i)). When the algorithm terminates L will include the red and
gray boxes in Figure 1 and A = ∅.

Aside from noting this minor distinction, constructing Jε
n,m requires one

additional step. Before INTERPOLATE[Jε
n(ξ),L,A,τ ,m] is called the function

value at all points in Lmust be updated to include the physical discretization
error estimate δ(Jh(ξ)). That is for all ξl,i ∈ L set the function value at
that point to Jh(ξl,i) + δ(Jh(ξl,i)). The hierarchical surpluses at each of
these points must also be update accordingly. We do this because any new
points to the enhanced sparse grid will have function values Jh,n(ξl,i) +
ε(Jh,n(ξl,i)), where ε(Jh,n(ξl,i)) includes the deterministic error estimate.
We again remark that in order to compute the physical discretization error
estimate, the physical discretization used to compute the adjoint solution
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must be higher-order than the method used to compute the forward solution.
This is standard practice in adjoint-based error estimation for deterministic
problems.

The method used to constructing an enhanced sparse grid using lo-
cal refinement is similar to that employed when using dimension refine-
ment. Again we must simply define the initial sets L and A and then call
INTERPOLATE after adjusting the function values and hierarchical surpluses
for all ξl,i ∈ L.

7.2. Balancing the stochastic and physical discretization errors
When quantifying uncertainty of models, the deterministic and stochas-

tic discretization error must both be accounted for. It is inefficient to reduce
the stochastic error to a level below the error introduced by the physical
discretization. In the following we assume that physical discretization and
thus physical discretization error is pre-determined and cannot be changed.
When balancing stochastic error with a fixed physical discretization error
with this assumption, we must be able to handle two regimes: firstly that
our computational budget is large enough to drive the stochastic error below
the physical discretization error; and secondly it will not be possible to the
stochastic error below the physical discretization error.

In the first regime we must be able to identify when the sparse grid
is sufficiently refined. So when Jε

n(ξ) is constructed, we set τ to be the
maximum of the approximate physical discretization error δmax and the
approximate stochastic error γmax in the enhanced sparse grid. The error
in the error estimate is the product of the error in the approximation of the
forward solution and the error in the approximation of the adjoint solution
[5, 4, 6]. Consequently a reasonable approximation of the potential accuracy
of the enhanced sparse grid is the square of the maximum indicator γl,i of
all points in A, that is η2.

In the second regime, the goal is to reduce the total error as much as
possible within the computational budget. To do this we must to consider
the costs of solving the forward problem, solving the adjoint problem, and
evaluating the error estimate (5.1). From our experiments we found it to be
advantageous to limit the number of forward and adjoint solves to be 1/2
of the computational budget, and to utilize the remaining effort to evaluate
ε(Jh,n(ξ)) to build the enhanced sparse grid. In many cases, using half the
computational budget for computing ε(Jh,n(ξ)) is overkill. This is especially
true if the cost in evaluating the error estimate is 2-3 orders of magnitude
cheaper than solving the forward or adjoint problems. Consequently, we use
an error indicator to terminate the sparse grid earlier if a desired tolerance
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is met. Note here we have made the reasonable assumption that the cost
of one forward solve and one adjoint solve are approximately equal, thus
the choice of n/4 when constructing zh,n/4 and φh,n/4. The cost in solving
the adjoint problem may actually be smaller than the cost in solving the
forward problem even if a higher order method is used for the adjoint since
the adjoint problem is always linear. We remark that these termination
conditions removes the need for knowledge of what computational budget
regime is active.

8. Results

In this section, we provide several numerical examples to illustrate the
properties and convergence of the proposed methodology. All of the exam-
ples use 100, 000 Latin Hypercube samples to compute the discrete `2 error,
unless otherwise stated. In all of the figures, the expression left of the colon
in the legend denotes the quantity being approximated and the expression
on the right denotes the type of refinement employed. For definitions of the
refinement types refer to the end of §6.

8.1. Parameterized linear system
Consider the diagonally dominant parameterized linear system[

ξ1 ξ2

ξ3 ξ4

] [
z1

z2

]
=
[
2
1

]
or in matrix notation Az = b (8.1)

with ξ1, ξ3 ∈ [2, 4] and ξ2, ξ4 ∈ [0, 1]. The adjoint equation is given by

ATφ = ψ (8.2)

We take our quantity of interest to be the first component of the solution z,
so we set ψ = [1, 0]T .

As an initial step to illustrating the benefits of the proposed methodol-
ogy, we mirror the work outlined in [4] and demonstrate the accuracy gained
by enhancing the interpolant of the linear functional Jh,n(ξ) with samples
from the error estimate ε(Jh,n(ξ)).

We build a surplus-based dimension-adaptive sparse grid using Clenshaw-
Curtis abscissa and compute ‖Jh(ξ)− Jh,n(ξ)‖`2(Γξ) by sampling ξ using a
100, 000 point Latin hypercube. We then compute error-estimates at the
same 100, 000 points and calculate ‖Jh(ξ)− (Jh,n(ξ) + ε(Jh,n(ξ)))‖`2(Γξ).
Note that this example does not contain any physical discretization error,
so J(ξ) = Jh(ξ).
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Figure 2 shows the `2 error in the functional value and the error in the
improved function value as the computational cost increases. We define one
unit of cost to be the computational cost of one solve of the forward model
and assume that the cost of solving the adjoint equation is also equal to one
unit. For this example, we ignore the cost of computing the error estimate.

Figure 2: Approximation of the 4d parameterized linear system using a dimension-adaptive
Clenshaw-Curtis sparse grid.

Figure 3 compares error in the functional value and the error in the
improved function value as the computational cost increases using local
adaptivity based upon one-dimensional equidistant meshes and piecewise
quadratic basis functions using surplus-based refinement. Throughout the
remainder of this manuscript, a quadratic basis will be used when local
adaptivity is employed, unless otherwise stated.

Similarly to the results obtained in [4], which were obtained using en-
hanced polynomial chaos expansions, enhancing both dimension adaptive
and locally adaptive sparse grids with error estimates greatly increases ac-
curacy for a fixed computational cost.
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Figure 3: Approximation of the 4d parameterized linear system using a locally-adaptive
sparse grid with a quadratic basis

8.2. Heterogeneous diffusion equation
In this section, we investigate the performance of the proposed method-

ology when applied to a Poisson equation with an uncertain heterogeneous
diffusion coefficient. Attention is restricted to the one-dimensional physical
space to avoid unnecessary complexity. The procedure described here can
easily be extended to higher physical dimensions.

Consider the following problem with d ≥ 1 random dimensions:

− d

dx

[
a(x, ξ)

dz
dx

(x, ξ)
]

= 10, (x, ξ) ∈ (0, 1)× Iξ (8.3)

subject to the physical boundary conditions

z(0, ξ) = 0, z(1, ξ) = 0 (8.4)

Furthermore assume that the log random diffusivity satisfies

a(x, ξ) = ā+ σa

d∑
k=1

√
λkφk(x)ξk (8.5)
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where {λk}dk=1 and {φk(x)}dk=1 are, respectively, the eigenvalues and eigen-
functions of the covariance kernel

Ca(x1, x2) = exp
[
−(x1 − x2)2

2lc

]
The variability of the diffusivity field (8.5) is controlled by σa and the cor-
relation length lc which determines the decay of the eigenvalues λk. Here
we set d = 25, σa = 1., lc = 0.1, ā = 0 and ξk ∈ [−1, 1], k = 1, . . . , d
to be independent and uniformly distributed random variables. We define
our quantity of interest to the the value of the solution at x=0.5 which we
approximate using the linear functional J(ξ)(ξ) = (ψ(x), z(x, ξ)) where

ψ(x) = Cs exp(−100(x− .5)2),

where Cs is a scaling constant chosen so that
∫ 1

0 ψ(x) dx = 1. The corre-
sponding adjoint problem is given by

− d

dx

[
a(x, ξ)

dφ

dx
(x, ξ)

]
= ψ(x), (x, ξ) ∈ (0, 1)× Iξ (8.6)

subject to the physical boundary conditions

φ(0, ξ) = 0, φ(1, ξ) = 0 (8.7)

Unlike the parameterized linear system discussed in the previous section,
the solution to (8.3) must be approximated numerically which introduces sig-
nificant physical discretization error (error labeled I in (1.1)). This physical
discretization error must be accounted for when quantifying uncertainty.
We approximate the solution to (8.3) using a standard continuous Galerkin
finite element method on a uniform mesh with 100 elements (h = 0.01) and
piecewise linear basis functions. To include the deterministic component in
the error estimate, we need to solve the adjoint problem using a higher-order
discretization than was used to solve the forward problem. In this paper, we
use a continuous Galerkin method with piecewise quadratic basis functions
to approximate the adjoint solution. The deterministic error using the afore-
mentioned discretization is approximately δmax = 8.41× 10−5. Any compu-
tational effort used to drive the stochastic error below the deterministic error
will be wasted. Figure 4 compares the convergence of an un-enhanced sparse
surplus-based, dimension-adaptive, Clenshaw-Curtis grid Jh,n(ξ) with the
enhanced sparse grid approximation Jε

n. Again we have computed the error
estimates directly at the 100, 000 point Latin hypercube samples used to
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compute ‖Jh(ξ)− Jh,n(ξ)‖`2(Γξ) and ‖Jh(ξ)− (Jh,n(ξ) + ε(Jh,n(ξ)))‖`2(Γξ).
Clearly, again there is significant benefit from using error estimates to im-
prove the sparse grid interpolant.

Figure 4 also shows the importance of not refining the sparse grid when
the stochastic error is smaller than the physical discretization error. When
when the stochastic error is smaller than the physical discretization error the
accuracy in the enhanced sparse grid stagnates at approximately the phys-
ical discretization error. Note this stagnation does not occur in Figures 2
and 3 because the parameterized linear system being studied does not have
a physical discretization error.

Figure 4: Approximation of the 25d heat equation using a dimension-adaptive Clenshaw-
Curtis sparse grid

The cost of computing ε(Jh,n(ξ)) is non-trivial and in this example the
cost of evaluating ε(Jh,n(ξ)) at 100, 000 points would outweigh the cost of the
forward and adjoint solves. Consequently we must build an approximation
of the error estimate using the approach described in Section 7. In all plots
shown in the remainder of this paper, the cost of computing the sparse grid
approximation, shown on the horizontal axis, includes the cost of evaluating
the a posteriori error estimate, building the enhanced the sparse grid ap-
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proximation, and calculating the refinement indicators. In all of these plots,
we also include Jε

n for reference, but this data does not include the compu-
tational cost in computing the error estimate. In this example, we assume
that the cost of evaluating the error estimate is 1/25 of a computational
unit.

The need to set appropriate termination criteria outlined in Section 7.2
is illustrated in Figure 5. The figure illustrates that as more forward and
adjoint solutions are used to construct Jh,n(ξ) the higher accuracy that can
be obtained in the enhanced sparse grid Jε

n,m. However the accuracy that
can be obtain is limited, yet any error indicator that does not know the
‘true’ values of the quantity of interest will appear to converge to machine
precision. Consequently, as stated in Section 7.2, we set τ when constructing
the enhanced sparse grid in Algorithm 3 to be maximum of the approximate
physical discretization error δmax and the approximate stochastic error γmax

in the enhanced sparse grid.

Figure 5: The decay of the `2 error vs the decay in the error indicator for the enhanced
sparse grid Jε

n,m, starting from an initial grid with 51 points (left) and 103 points (right).

Figure 6 plots the convergence of the un-enhanced surplus-based dimension-
adaptive Clenshaw-Curtis sparse grids Jh,n(ξ), Jε

n and Jε
n,m. Both the un-

enhanced sparse grid and the enhanced sparse grid are refined until the
estimate of the stochastic error γmax is below the deterministic error δmax.
In the case of the un-enhanced grid this point is reached, and the conver-
gence study is terminated, when the sparse grid has 10, 000 points. The
computational cost of Jε

n,m includes the cost of evaluating the residual to
compute the error estimates needed at the sparse grid points. Here, we as-
sume that the cost of an error estimate is 1/25 of the cost of one forward
solve.

The enhanced sparse grid Jε
n,m is significantly more accurate than the

24



un-enhanced grid. However Jε
n,m is not as accurate as Jε

n. This is not a fair
comparison as in practice, using Jε

n is typically computationally infeasible.
However the comparison does that the choice of termination conditions in
Algorithm 1 means that the grid terminates before the error in the enhanced
grid is below the error in the error estimate. As Figure 5 shows this level of
accuracy can be obtained however it comes at the cost of (possibly many)
additional residual computations.

Figure 6: Comparison of the `2 convergence of the enhanced dimension-adaptive sparse
grid using direct evaluation of the error estimate Jε

n and a sparse grid approximation of
the enhanced QOI Jε

n,m.

Figure 7 plots the convergence of the un-enhanced surplus-based locally-
adaptive sparse grids Jh,n(ξ), Jε

n and Jε
n,m. The same conclusions drawn

when using dimension adaptivity can also be made here. The improvement
obtained by using Jε

n,m instead of Jh,n(ξ) is reduced however this can be ad-
dressed by the use of different refinement strategies discussed in Section 8.4

8.3. Non-linear coupled system of ODEs
For our third model problem, we consider a non-linear system of ordinary

differential equations governing a competitive Lotka–Volterra model of the
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Figure 7: Comparison of the `2 convergence of the enhanced locally-adaptive sparse grid
using direct evaluation of the error estimate and a sparse grid approximation of the en-
hanced QOI

population dynamics of species competing for some common resource. The
model is given by{

dzi
dt = rizi

(
1−

∑3
j=1 αijzj

)
, t ∈ (0, 10],

zi(0) = zi,0

, (8.8)

for i = 1, 2, 3. The initial condition, zi,0, and the self-interacting terms, αii,
are given, but the remaining interaction parameters, αij with i 6= j as well
as the re-productivity parameters, ri, are unknown. We assume that these
parameters are each uniformly distributed on [0.3, 0.7]. We approximate
the solution to (8.8) in time using a Backward Euler method with 1000
time steps (∆t = 0.01) which gives a deterministic error of approximately
1.00× 10−4.

The quantity of interest is the population of the third species at the final
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time, z3(10). The corresponding adjoint problem is
−dφi

dt = riφi

(
1−

∑3
j=1 αijzj

)
+ rizi

(
1−

∑3
j=1 αjiφj

)
, t ∈ (10, 0],

φi(10) = 0, i = 1, 2
φ3(10) = 1.

,

(8.9)
We approximate the adjoint solution in time using a second-order Crank-
Nicholson method with the same number of time steps.

Figure 8 and Figure 9 compare the convergence of Jh,n(ξ), Jε
n and Jε

n,m

when using a surplus based dimension-adaptive Clenshaw-Curtis sparse grid
and surplus locally adaptive sparse grid, respectively. Again, significant
increases in accuracy can be achieved by using Jε

n,m instead of Jh,n(ξ). As
seen in the previous example, the accuracy of Jε

n,m is not as high as Jε
n

but could be improved at the cost of additional residual calculations (error
estimates) at new sparse grid points.

Figure 8: Comparison of the `2 convergence of the enhanced dimension-adaptive sparse
grid using direct evaluation of the error estimate and a sparse grid approximation of the
enhanced QOI
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Figure 9: Comparison of the `2 convergence of the enhanced locally-adaptive sparse grid
using direct evaluation of the error estimate and a sparse grid approximation of the en-
hanced QOI

8.4. Alternative Refinement Strategies
In this section we demonstrate the utility of using the alternative refine-

ment strategies outlined in Section 6. Specifically we consider a posteriori
refinement indicators for both dimension and locally adapted sparse grid.
In the case of local refinement we also consider the simultaneous dimension
and local refinement in addition to the typical local refinement strategy used
in all examples thus far.

Figure 10 compares refinement strategies for the 25d heat equation prob-
lem presented in Section 8.2. It is clear that the use of a posteriori refinement
results in significant increases in efficiency. This result is due to the fact that
the a posteriori subspace refinement indicator γl only requires computation
of error estimates which are relatively cheap compared to the evaluation
of the forward model. Thus the function evaluations that are needed by
surplus refinement that probe candidate subspaces are often redundant and
this redundant evaluation can be avoided by using a posteriori refinement.
The high-dimensional nature and the strong degree of anisotropy of this
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problem are an ideal setting for a posteriori refinement. If the function was
lower dimensional or have less anisotropy then surplus refinement would
be more competitive as the amount of redundant model evaluations would
reduce. This point is illustrated in Figure 11 which compares a posteri-
ori and surplus dimension adaptive sparse grids when used to solve the 9d
predator-prey model presented in Section 8.3.

Figure 10: Comparison of dimension-adaptive refinement strategies when applied to the
25d heat equation

A posteriori refinement can also be used in conjunction with local refine-
ment. Figure 12 compares refinement strategies for the 25d heat equation.
The use of generalized local refinement results in a vast improvement over
traditional local refinement. The best refinement strategy for this problem
is to use a posteriori refinement indicators with the generalized local refine-
ment. This result is due to the high-dimension of the problem and the high
degree of anisotropy.

Figure 13 compares refinement strategies for the 9d predator prey model.
Due to the low degree of anisotropy of this function generalized local refine-
ment provides now improvement over traditional local refinement. In the
case of the surplus-based enhanced sparse grid the accuracy is slightly worse.
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Figure 11: Comparison of dimension-adaptive refinement strategies when applied to 9d
predator prey model

Traditional surplus based refinement is the most accurate strategy here, but
the a posteriori error based generalized local refinement has comparable
accuracy.

9. Conclusions

In this paper we present an algorithm for adaptive sparse grid approxima-
tions of quantities of interest computed from discretized partial differential
equations. We use adjoint-based a posteriori error estimates of the inter-
polation error in the sparse grid to enhance the sparse grid approximation
and to drive adaptivity. Using a number of numerical examples we show
that utilizing a posteriori error estimates provides significantly more accu-
rate functional values for random samples of the sparse grid approximation.
The cost of computing these error estimates can be non-trivial and thus we
provide a practical method for enhancing a sparse grid approximation using
only a finite set of error estimates.
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Figure 12: Comparison of local refinement strategies when applied to the 25d heat equation

Aside from using a posteriori error estimates to enhance an approxima-
tion we also demonstrate that error estimates can be used to increase the
efficiency of adaptive sampling. Traditional sparse grid adaptivity employs
error indicators based upon the hierarchical surplus are used to flag dimen-
sions or local regions for refinement. However such approaches require the
model to be evaluated at a new point before one can determine if refine-
ment should have taken place. In this paper we numerically demonstrated
that refinement using a posteriori error estimates can significantly reduce
the amount of redundant sampling compared when compared to traditional
hierarchical refinement.

In combination with the aforementioned enhancement and refinement
procedures we use a posteriori error estimates to ensure that the sparse grid
is not refined beyond the point at which the stochastic interpolation error is
below the physical discretization error. The methodology presented provides
a practical means of balancing the stochastic and deterministic discretization
errors.
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Figure 13: Comparison of local refinement strategies when applied to the 9d predator prey
model
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